Appendix A:

MM5 Flow Charts

A flow chart for MM5 showing the calling structure of its subroutines is shown in Figure A1 with the flow charts (expansion) of major subroutines CHKNST, NSTLEV1, and SOLVE3 shown in Figures A2 and A3. Subroutines appended with a pound sign (#) are expanded elsewhere in the Figure, and those appended with an asterisk (*) are expanded in a different Figure. A few subroutines (ADDRX1C, ADDRX1N, DOTS, XTDOT, SKIPF, and EQUATE) are not shown in the flow charts. Information concerning which subroutines call them can be found in section 5.
Figure A1. Flow chart of MM5. The expansions of the subroutines appended with an asterisk are shown in Figure A2.

Note: The flow chart structure of subroutine SOLVE1 is very similar to that of SOLVE3 except that subroutine SOUND is not called but subroutine SPONGE is called.
Figure A2. Flow chart for major subroutines CHKNST and NSTLEV1. The expansions of the subroutines appended with an asterisk are shown in Figure A1.

Note: The flow chart structure of subroutines NSTLEV2 and NSTLEV3 is nearly identical to that of NSTLEV1.
Figure A3. Flow chart for major subroutine SOLVE3. The expansions of the subroutines appended with an asterisk are shown in Figures A1 (for MAPSMP) and A2 (for IN4DGD). The routine appended with a double asterisk calls two subroutines not shown (MAXIMI and MINIMI).
Appendix B:

MM5 Job Deck

This appendix gives an example of the UNICOS script required to submit an MM5 job. It contains 1) UNICOS QSUB directives, 2) input/output Mass Store filenames, 3) UPDATE directives to define the model dimensions and other major PARAMETERs, and 4) the local input file with the NAMELISTs. It also includes the commands for compiling, loading, and running the model.
Appendix B: MM5 Job Deck

QSUB -r MM5v1 # request name
QSUB -q reg # job queue class
QSUB -co # stdout and stderr together
QSUB -lM 8Mw # maximum memory
QSUB -IT 5000 # time limit
QSUB # no more qsub commands
#
ja
cd $TMPDIR
batchname mm5.out
#
**
******* mm5 batch C shell *******
**
#
how many CRAY CPUs to use to run the model, set to 1 if not multitasking
#
setenv NCPUS 1
#
this should be the user's case or experiment (used in MS name)
#
set ExpName = MM5/TEST
set RetPd = 365 # MSS retention period in days
#
set Mods = () # do not change if no user's own mm5 mods
#
host computer name to rcp user's mm5 mods
set Host = username@host.domain:/usr/tmp/username
#
type of mm5 job
#
set recompile = yes # if yes, recompiled the mm5 code
set recompile = no # if yes, recompiled the mm5 code
#
set CaseName = CTL # MSS pathname for this sensitivity test
#
set STARTsw = NoReStart # start model run at hour 0
set STARTsw = ReStart # restart model run
#
set FDDAsw = NoFDDA # no FDDA input files
set FDDAsw = Anly # gridded FDDA input files
set FDDAsw = Obs # obs FDDA input files
set FDDAsw = Both # gridded and obs FDDA input files
#
set HYDROsw = Hydro # hydrostatic input files
set HYDROsw = NonHydro # nonhydrostatic input files
#
set NumDomInp = 1 # number of initial condition input files
set DomIDInp = (1) # domain ID no. for the initial condition inputs
#
if ($HYDROsw == NonHydro) then
 set InitName = $ExpName/NH
else
 set InitName = $ExpName/HY
endif
#
boundary file
set InBdy = $InitName/BDYOUT_DOMAIN1
#
initial conditions
#
set InMM = ($InitName/MMINPUT_DOMAIN1)
set InMM = ($InitName/MMINPUT_DOMAIN1 \
$InitName/MMINPUT_DOMAIN2)
#
the input restart file
#
if ($STARTsw == ReStart) then
 set InRst = ($InitName/$CaseName/SAVE_DOMAIN1 \
 $InitName/$CaseName/SAVE_DOMAIN2)
endif
#
4dda surface analyses
#
if (($FDDAsw == Anly) || ($FDDAsw == Both)) then
 set In4DSfc = ($ExpName/RW4DDA_DOMAIN1 \
 $ExpName/RW4DDA_DOMAIN2)
endif
#
4dda observations
#
if (($FDDAsw == Obs) || ($FDDAsw == Both)) then
 set In4DObs = ($ExpName/MM5OBS_T12)
endif
#
MSS directory name for history, save, shut down and print out files
#
if ($STARTsw == ReStart) then
 set OutMM = ${InitName}/${CaseName}_RES
else
 set OutMM = ${InitName}/${CaseName}
endif
#
update for mm5, data dimensions
#
if ($recompile == yes) then
 cat >! mm5.mods << EOF
 */
 */ **
 */ **
 */ PARAMETER VALUES TO MODIFY FOR DOMAIN SIZES
 */ **
 */ **
 */
 */ ID USERDEF
 */
 */ MAXNES : TOTAL NUMBER OF DOMAINS IN THE FORECAST,
 */ INCLUDING THE COARSE GRID
 */
 */ NLNES : NUMBER OF LEVELS OF NEST. IF THE COARSE GRID
 */ HAS A FINE GRID, NLNES=2
 */
 */ MIX,MJX,MKX : MIX (MJX) IS THE MAXIMUM NUMBER OF
 */ VALUES ON DOT POINTS IN THE Y (X) DIRECTION
 */ FOR ALL DOMAINS.
 */ MKX IS THE NUMBER OF HALF SIGMA LAYERS.
 */
EOF
*/
Appendix B: MM5 Job Deck

/*/
*/
*D PARAME.2,20
C
C--- ADDITIONAL MEMORY REQUIREMENTS FOR FDDA RUNS (IFDDA=1),
C--- NONHYDROSTATIC RUNS (INHYD=1), HIGHER ORDER PBL RUNS (INAV=1),
C--- EXPLICIT MOISTURE SCHEME (IEXMS=1), ARAKAWA-SCHUBERT
C--- CONVECTIVE PARAMETERIZATION (IARASC=1), AND ATMOSPHERIC
C--- RADIATION (IRDDIM=1).
C
C PARAMETER (IFDDA=0,INHYD=0,INAV=0,IICE=0,
1 IEXMS=0,IARASC=0,IRDDIM=0)
C
C--- NUMBER OF DOMAINS (MAXNES) AND NESTLEVELS (NLNES)
C PARAMETER (MAXNES=1,NLNES=1)
C
C--- MAXIMUM DIMENSIONS OF ANY DOMAIN
C PARAMETER (MIX=1,MJX=1,MKX=1)
*/
COMMENT the following line, if running in extended mt class
*D MM5.170,178
EOF
endif
local namelist values
cat >! mmlif << EOF
&OPARAM ; <-- MOD2
;---
; YOU CAN REMOVE THE UNWANTED DATA FROM THE FOLLOWING LISTING
; AND USE THE DEFAULT VALUES DEFINED IN SUBROUTINE 'PARAM'.
;---
IFREST = F, ;RESTART
IXTIMR =720,
LEVIDN = 0,1,1,1,1,1,1,1,1,1, ; level of nest for each domain
NUMNC = 1,1,1,1,1,1,1,1,1,1, ; ID of mother domain for each nest
IFSAVE = T, ; SAVE DATA FOR RESTART
SAVFRQ =360., ; ... in minutes.
IFTAPE = 1, ; OUTPUT FOR GRIN backend
TAPFRQ =60., ; ... in minutes.
IFPRT = 0, ; 1: print output
PRTFRQ = 720., ; Print output frequency in minutes
MASCHK = 60., ; MASS CONSERVATION CHECK (minutes)
& ;---
&LPARAM
iactiv=1,0,0,0,0,0,0,0,0,0,0, ; in case of restart: was this domain active?
;
;************** start physics options ***************
;
IFRAD = 0, ;RADIATION COOLING OF ATMOSPHERE - 0, 1, 2
RADFRQ = 30., ;RADIATION FREQUENCY IN MINUTES
ICUSTB = 0, ;STABILITY CHECK FOR CUMULUS PARAM. - 0, 1
IEXICE = 0, ;ICE-PHYSICS IN EXPLICIT SCHEME - 0, 1
IFDRY = 0, ;FAKE-DRY RUN - 0, 1
IMVDIF = 0, ;MOIST VERTICAL DIFFUSION IN CLOUDS - 0, 1
IBMOIST = 0, ;BOUNDARY AND INITIAL WATER/ICE SPECIFIED - 0, 1

EOF
ICOR3D = 0, :3D CORIOLIS FORCE (FOR NH RUN ONLY) - 0, 1
IFUPR = 0, :UPPER RADIATIVE BOUNDARY CONDITION (NH) - 0, 1

IBOUDY = 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2:BOUNDARY CONDITIONS
(FIXED, RELAXATION, TIME-DEPENDENT, TIME AND INFLOW/OUTFLOW DEPENDENT,
SPONGE - 0, 1, 2, 3, 4)
IBLTYP = 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,:PBL TYPE
(FRICTIONLESS, BULK PBL, MULTI-LEVEL PBL - 0, 1, 2)
IDRY = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,:MOIST OR DRY CASE - 0, 1
IMOIST = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, :NON-EXPLICIT, EXPLICIT, - 1, 2
ICUPA = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,:NONE,KUO,GRELLA-S - 1,2,3,4
ISFFLX = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,:SURFACE FLUXES - 0, 1
ITGFGL = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,:SURFACE TEMPERATURE - 1, 3
ISFPAR = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,:SURFACE CHARACTERISTICS - 0, 1
ICLOUD = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,:CLOUD EFFECTS ON RADIATION - 0, 1
IDRY = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,:CONSTANT DRAG COEFFICIENTS - 0, 1
IFSNOW = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,:SNOW COVER EFFECTS - 0, 1
IMOIAV = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,:VARIABLE MOISTURE AVAILABILITY - 0, 1
IVMIXM = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,:VERTICAL MIXING OF MOMENTUM - 0, 1
HYDPRE = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,:HYDRO EFFECTS OF LIQ WATER - 0, 1
IEVAP = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,:EVAP OF CLOUD/RAINWATER - <0, 0, >0
ISHALL= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,:SHALLOW CONVECTION - 0, 1

:************** end physics options **************

:************** start nesting options **************

nestix = 46, 46, 46, 46, 46, 46, 46, 46, 46, 46,: domain size I
nestjx = 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,: domain size J
nesti = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,: start location I
nestj = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,: start location J
xstnes = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,: domain initiation
xennes = 1440, 1440, 1440, 720, 720, 720, 720, 720, 720,: domain completion
ioverw = 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,: overwrite domain

:************** end nesting options **************

:************** start moving options **************

imove = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,: move domain 0,1
imoveo = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,: Ist move #
imove(J,K)=L,: I-INCREMENT MOVE (DOMAIN J, MOVE NUMBER K) IS L
imovei = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,: I move #1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,: I move #2
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,: I move #3
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,: I move #4
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,: I move #5
imovej = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,: J move #1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,: J move #2
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,: J move #3
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,: J move #4
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,: J move #5
imovet = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,: time of move #1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,: time of move #2
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,: time of move #3
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,: time of move #4

March 1994

MM5 Model Documentation B.5
0, 0, 0, 0, 0, 0, 0, 0, 0, 0; time of move #5

;************************ end moving options ************************

& FFPARAM
 TIMAX = 1440., ; IN MINUTES. 720=12h, 1440=24h, 2160=36h, 2880=48h
 ZZLND = 0.1, ; ROUGHNESS LENGTH OVER LAND IN METERS
 ZZWTR = 0.0001, ; ROUGHNESS LENGTH OVER WATER IN METERS
 ALBLND = 0.15, ; ALBEDO
 THINLD = 0.04, ; SURFACE THERMAL INERTIA
 XMAVA = 0.3, ; MOISTURE AVAILABILITY OVER LAND AS A DECIMAL
 FRACTION OF ONE
 CONF = 1.0, ; NON-CONVECTIVE PRECIPITATION SATURATION
 TISTEP = 270., ; COARSE DOMAIN DT IN MODEL, USE 3*dX
 ifeed = 3, ; OLD FEEDBACK, NO/LIGHT SMOOTHING IN FEEDBK - 1,2,3
 iabsor = 0, ; SPONGE ON UPPER BOUNDARY (HYD) - 0,1

& FFPARAM

;******************** ANALYSIS NUDGING ******************

 THE FIRST DIMENSION (COLUMN) IS THE DOMAIN IDENTIFIER:
 COLUM #1 = DOMAIN #1, COLUM #2 = DOMAIN #2, ETC.

 START TIME FOR FDDA (ANALYSIS OR OBS) FOR EACH DOMAIN
 (IN MINUTES RELATIVE TO MODEL INITIAL TIME)
 FDASTA=0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,

 ENDING TIME FOR FDDA (ANALYSIS OR OBS) FOR EACH DOMAIN
 (IN MINUTES RELATIVE TO MODEL INITIAL TIME)
 FDAEND=780.,0.,0.,0.,0.,0.,0.,0.,0.,0.,

 **
 ************** ANALYSIS NUDGING ****************************
 **

 THE FIRST DIMENSION (COLUMN) OF THE ARRAYS DENOTES THE
 DOMAIN IDENTIFIER:
 COLUM #1 = DOMAIN #1, COLUM #2 = DOMAIN #2, ETC.
 THE SECOND DIMENSION (ROW OR LINE) EITHER REFERS TO THE 3D VS
 SFC ANALYSIS OR WHICH VARIABLE IS ACCESSED:
 LINE 1 = 3D, LINE 2 = SFC OR
 LINE 1 = U, LINE 2 = V, LINE 3 = T, LINE 4 = Q

 IS THIS A GRID 4DDA RUN? 0 = NO; 1 = YES
 I4D=0,0,0,0,0,0,0,0,0,0, ; 3D ANALYSIS NUDGING
 0,0,0,0,0,0,0,0,0,0, ; SFC ANALYSIS NUDGING

 SPECIFY THE TIME IN MINUTES BETWEEN THE INPUT (USUALLY
 FROM INTERP) USED FOR GRID FDDA
 DIFTIM=720.,720.,0.,0.,0.,0.,0.,0.,0.,

 GRID NUDGE THE WIND FIELD? 0 = NO; 1 = YES
IWIND=1,1,0,0,0,0,0,0,0,0, ; 3D ANALYSIS NUDGING
1,1,0,0,0,0,0,0,0,0, ; SFC ANALYSIS NUDGING

: NUDGING COEFFICIENT FOR WINDS ANALYSES
GV=2.5E-4,1.0E-4,0.,0.,0.,0.,0.,0.,0.,0., ; 3D ANALYSIS NUDGING
2.5e-4,1.0E-4,0.,0.,0.,0.,0.,0.,0.,0., ; SFC ANALYSIS NUDGING

: GRID NUDGE THE TEMPERATURE FIELD? 0 = NO; 1 = YES
ITEMP=1,1,0,0,0,0,0,0,0,0, ; 3D ANALYSIS NUDGING
1,1,0,0,0,0,0,0,0,0, ; SFC ANALYSIS NUDGING

: NUDGING COEFFICIENT FOR TEMPERATURE ANALYSES
GT=2.5e-4,1.0E-4,0.,0.,0.,0.,0.,0.,0.,0., ; 3D ANALYSIS NUDGING
2.5e-4,1.0E-4,0.,0.,0.,0.,0.,0.,0.,0., ; SFC ANALYSIS NUDGING

: GRID NUDGE THE MIXING RATIO FIELD? = 0 ; NO = 1 ; YES
IMOIS=1,1,0,0,0,0,0,0,0,0, ; 3D ANALYSIS NUDGING
1,1,0,0,0,0,0,0,0,0, ; SFC ANALYSIS NUDGING

: NUDGING COEFFICIENT FOR THE MIXING RATIO ANALYSES
GQ=1.E-5,1.E-5,0.,0.,0.,0.,0.,0.,0.,0., ; 3D ANALYSIS NUDGING
1.E-5,1.E-5,0.,0.,0.,0.,0.,0.,0.,0., ; SFC ANALYSIS NUDGING

: GRID NUDGE THE ROTATIONAL WIND FIELD? 0 = NO; 1 = YES
IROT=0,0,0,0,0,0,0,0,0,0, ; 3D ANALYSIS NUDGING

: NUDGING COEFFICIENT FOR THE ROTATIONAL COMPONENT OF THE WINDS
GR=5.E6,5.E6,0.,0.,0.,0.,0.,0.,0.,0., ; 3D ANALYSIS NUDGING

: IF GRID NUDGING (I4D(1,1)=1) AND YOU WISH TO EXCLUDE THE
: BOUNDARY LAYER FROM FDDA OF COARSE GRID THREE DIMENSIONAL
: DATA (USUALLY FROM INTERP),
: 0 = NO, INCLUDE BOUNDARY LAYER NUDGING
: 1 = YES, EXCLUDE BOUNDARY LAYER NUDGING
INONBL =0,0,0,0,0,0,0,0,0,0, ; U WIND
0,0,0,0,0,0,0,0,0,0, ; V WIND
0,0,0,0,0,0,0,0,0,0, ; TEMPERATURE
0,0,0,0,0,0,0,0,0,0, ; MIXING RATIO

: RADIUS OF INFLUENCE FOR SURFACE ANALYSIS (KM).
: IF I4D(2,1)=1 OR I4D(2,2)=1, ETC, DEFINE RINBLW (KM) USED
: IN SUBROUTINE BLW TO DETERMINE THE HORIZONTAL VARIABILITY
: OF THE SURFACE-ANALYSIS NUDGING AS A FUNCTION OF SURFACE
: DATA DENSITY. OVER LAND, THE STRENGTH OF THE SURFACE-
: ANALYSIS NUDGING IS LINEARLY DECREASED BY 80 PERCENT AT
: THOSE GRID POINTS GREATER THAN RINBLW FROM AN OBSERVATION
: TO ACCOUNT FOR DECREASED CONFIDENCE IN THE ANALYSIS
: IN REGIONS NOT NEAR ANY OBSERVATIONS.
RINBLW=250.

: SET THE NUDGING PRINT FREQUENCY FOR SELECTED DIAGNOSTIC
: PRINTS IN THE GRID (ANALYSIS) NUDGING CODE (IN CGM
: TIMES STEPS)
NPFG=50,
Appendix B: MM5 Job Deck

INDIVIDUAL OBSERVATION NUDGING. VARIABLES THAT ARE ARRAYS
USE THE FIRST DIMENSION (COLUMN) AS THE DOMAIN IDENTIFIER:
COLUMN 1 = DOMAIN #1, COLUMN 2 = DOMAIN #2, ETC.

IS THIS INDIVIDUAL OBSERVATION NUDGING? 0 = NO; 1 = YES
I4DI =0,0,0,0,0,0,0,0,0,0,

OBS NUDGE THE WIND FIELD FROM STATION DATA? 0 = NO; 1 = YES
ISWIND =1,0,0,0,0,0,0,0,0,0,

NUDGING COEFFICIENT FOR WINDS FROM STATION DATA
GIV =4.E-4,4.E-4,0.,0.,0.,0.,0.,0.,0.,0.,

OBS NUDGE THE TEMPERATURE FIELD FROM STATION DATA? 0 = NO; 1 = YES
ISTEMP=1,0,0,0,0,0,0,0,0,0,

NUDGING COEFFICIENT FOR TEMPERATURES FROM STATION DATA
GIT =4.E-4,4.E-4,0.,0.,0.,0.,0.,0.,0.,0.,

OBS NUDGE THE MIXING RATIO FIELD FROM STATION DATA? 0 = NO; 1 = YES
ISMOIS=1,0,0,0,0,0,0,0,0,0,

NUDGING COEFFICIENT FOR THE MIXING RATIO FROM STATION DATA
GIQ =4.E-4,4.E-4,0.,0.,0.,0.,0.,0.,0.,0.,

THE OBS NUDGING RADIUS OF INFLUENCE IN THE
HORIZONTAL IN KM FOR CRESSMAN-TYPE DISTANCE-WEIGHTED
FUNCTIONS WHICH SPREAD THE OBS-NUDGING CORRECTION
IN THE HORIZONTAL.
RINXY=240.,

THE OBS NUDGING RADIUS OF INFLUENCE IN THE
VERTICAL IN SIGMA UNITS FOR CRESSMAN-TYPE DISTANCE-
WEIGHTED FUNCTIONS WHICH SPREAD THE OBS-NUDGING
CORRECTION IN THE VERTICAL.
RINSIG=0.001,

THE HALF-PERIOD OF THE TIME WINDOW, IN MINUTES, OVER
WHICH AN OBSERVATION WILL AFFECT THE FORECAST VIA OBS
NUDGING. THAT IS, THE OBS WILL INFLUENCE THE FORECAST
FROM TIMEOBS-TWINDO TO TIMEOBS+TWINDO. THE TEMPORAL
WEIGHTING FUNCTION IS DEFINED SUCH THAT THE OBSERVATION
IS APPLIED WITH FULL STRENGTH WITHIN TWINDO/2 MINUTES
BEFORE OR AFTER THE OBSERVATION TIME, AND THEN LINEARLY
DECREASES TO ZERO TWINDO MINUTES BEFORE OR AFTER THE
OBSERVATION TIME.
TWINDO=40.0,

THE NUDGING PRINT FREQUENCY FOR SELECTED DIAGNOSTIC PRINT
IN THE OBS NUDGING CODE (IN CGM TIMESTEPS)
NPFI=20,

FREQUENCY (IN CGM TIMESTEPS) TO COMPUTE OBS NUDGING WEIGHTS
IONF=2,
&:--
EOF
#
#--
End User Modification
this is INTERACTIVE or BATCH
#
if ($?ENVIRONMENT) then
 echo "environment variable defined as $ENVIRONMENT"
else
 setenv ENVIRONMENT INTERACTIVE
 echo "environment variable defined as $ENVIRONMENT"
endif
#
initializations, no user modification required
#
set LETTERS = (A B C D E F G H I J K L M N O P Q R S T U V W X Y Z)
set MesoUser = /u1/mesouser/MM5V1/MM5
#
get boundary conditions from MS
#
msread bdyout $InBdy
#
loop over how many files of domains to acquire
#
set NUM = 0
while ($NUM < $NumDomInp)
 @ NUM ++
#
initial conditions
#
msread fort.1$DomIDInp[$NUM] $InMM[$NUM]
#
input restart conditions
#
if ($STARTsw == ReStart) then
 msread fort.9$DomIDInp[$NUM] $InRst[$NUM]
endif
#
get analyses for nudging
#
if (($FDDAsw == Anly) || ($FDDAsw == Both)) then
cp fort.1$DomIDInp[$NUM] fort.3$DomIDInp[$NUM]
msread fort.7$DomIDInp[$NUM] $In4DSfc[$NUM]
 cp fort.7$DomIDInp[$NUM] fort.8$DomIDInp[$NUM]
endif
#
observations if OBS nudging
#
if (($FDDAsw == Obs) || ($FDDAsw == Both)) then
 msread fort.6$DomIDInp[$NUM] $In4DObs[$NUM]
endif
#
set up fortran input files for MM5
#
if (-c assign.mm5) rm assign.mm5
setenv FILENV assign.mm5
assign -a mmlif fort.7
assign -a ${MesoUser}/ehtran fort.8
assign -a bdyout fort.9
if ($recompile == yes) then

mm5 mod decks to include in update
#
set NUM = 0
while (NUM < ${#Mods})
 @ NUM ++
 echo "using $Mods[NUM] mod deck"
 rcp $Host/$Mods[NUM] .
 cat $Mods[NUM] >> mm5.mods
 rm $Mods[NUM]
end

if (-e m5_stand.mods) then
 echo "using local copy of m5_stand.mods"
 cat m5_stand.mods >> mm5.mods
else if (-e ~/m5_stand.mods) then
 echo "using MY copy of m5_stand.mods"
 cat ~/m5_stand.mods >> mm5.mods
else if (-e ${MesoUser}/m5_stand.mods) then
 echo "using standard copy of m5_stand.mods"
 cat ${MesoUser}/m5_stand.mods >> mm5.mods
else
 echo "not using any copy of m5_stand.mods"
endif

if (-e m5_my.mods) then
 echo "using local copy of m5_my.mods"
 cat m5_my.mods >> mm5.mods
else if (-e ~/m5_my.mods) then
 echo "using MY copy of m5_my.mods"
 cat ~/m5_my.mods >> mm5mods
else
 echo "not using any copy of m5_my.mods"
endif

make an MM5 source code
#
if (! -e mm5.v1) then
 echo "acquiring the mm5.v1 source code"
 cp ${MesoUser}/mm5v1.s mm5.v1
endif
nupdate -i mm5.v1 -n mmzin
nupdate -p mmzin -m 1 -f -i mm5.mods -o "id sq" -c mm5
set toast = $status
if ($toast != 0) then
 echo "error in the update, stopping"
 exit(1)
else if ($ENVIRONMENT != BATCH) then
 echo "error in the update, stopping"
 exit(1)
endif

compile MM5
#
cf77 -c -Wf"-o aggress" mm5.f
set toast = $status
if ($toast != 0) then
echo "error in the compile, stopping"
exits(1)
else if ($ENVIRONMENT != BATCH) then
 echo "compile complete, continue? (yes)"
 set ans = "$<"
 if (($ans == "n") || ($ans == "no")) then
 exit (1)
 endif
endif
#
load MM5
#
segldr -L /lib/usr/lib/ /usr/local/lib -l etime,imslcnv,imsl -o mm5.exe mm5.o
set toast = $status
if ($toast != 0) then
 echo "error in the segldr, stopping"
 exit(1)
else if ($ENVIRONMENT != BATCH) then
 echo "segldr complete, continue? (yes)"
 set ans = "$<"
 if (($ans == "n") || ($ans == "no")) then
 exit (1)
 endif
endif
endif
if ($recompile == no) then
 msread mm5.exe ${InitName}/${CaseName}/mm5.exe
 chmod +x mm5.exe
else
 mswrite mm5.exe ${InitName}/${CaseName}/mm5.exe
endif
execute:
ls -l
#
run MM5
#
date
mm5.exe >&! mm5.print.out
set toast = $status
if ($toast != 0) then
 echo "error in the forecast, stopping"
 debug -s mm5.exe
 if ($ENVIRONMENT != BATCH) exit(1)
endif
#
if interactive, probably do not want to dispose files
#
if ($ENVIRONMENT != BATCH) then
 echo -n "test mm5 run complete, continue? (no)"
 set ans = "$<"
 if (($ans != "y") && ($ans != "yes")) then
 exit (0)
 endif
endif
#
print and save the print output
#
Appendix B: MM5 Job Deck

ja -chls >! acct
cat acct >> mm5.print.out
if ($ENVIRONMENT == BATCH) cat mm5.print.out
#
history output 41-49
save file output 51-59
shutdown output 61-69
#
ls -ls
set Tens = (4 5 6)
set Name = (MMOOUT SAVE SHUTDO)
foreach OutType (1 2 3)
 set OutFileType = $Name[OutType]
 set OutUnits = 1 2 3 4 5 6 7 8 9
 if (-e fort.$Tens[OutType]$Units) then
 echo ls -l fort.$Tens[OutType]$Units >! hold
 set test = 'source hold'
 if ($test[4] < 400000000) then
 mswrite -t $RetPd fort.$Tens[OutType]$Units $OutMM/$OutFileType.DOMAIN$Units
 else
 if ($Tens[OutType] == 4) then
 if (! -e split.deck) then
 cp $MesoUser/split.deck .
 chmod +x split.deck
 endif
 mv fort.$Tens[OutType]$Units $OutType.DOMAIN$Units
 split.deck $OutType.DOMAIN$Units
 set Numb = 0
 foreach fil ('ls mmtmp*')
 @ Numb ++
 echo "mswrite $fil $OutMM/$OutType.DOMAIN$Units_SLETTERS[$Numb]"
 mswrite -t $RetPd Sfil $OutMM/$OutType.DOMAIN$Units_SLETTERS[$Numb]
 end
 rm mmtmp*
 else
 bsplit -400000000 fort.$Tens[OutType]$Units
 small.$Tens[OutType]$Units
 set NUM = 1
 echo ls small.$Tens[OutType]$Units.* >! hold
 set test = 'source hold'
 foreach split ($test)
 mswrite -t $RetPd $split $OutMM/$OutType.DOMAIN$Units_BSPLIT_SLETTERS[$NUM]
 @ NUM ++
 end
 endif
 endif
 endif
end
#
tar the namelist, mods, source code, executable, and output together
save the MM5 tar file on MSS

Appendix B: MM5 Job Deck

```
# tar -cvf mm5.tar mm5.f mmlif mm5.mods mm5.print.out
echo " mswrite -t $RetPd mm5.tar $ExpName/mm5.tar "
mswrite -t $RetPd mm5.tar $OutMM/mm5.tar
ls -ls
```
Appendix C:

Unit Number Allocations

Model input and output of various types are assigned to FORTRAN logical units as follows. Where the unit number has two digits, the second digit always refers to the domain number. All units are binary unless ASCII is specified. Units designated (I) are input, but are only used internally. Units 1-6 and those ending in zero are not used.

<table>
<thead>
<tr>
<th>UNIT</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>I</td>
<td>mmlif: model input namelist file (ASCII)</td>
</tr>
<tr>
<td>8</td>
<td>I</td>
<td>ehtran: look-up table for transmissivities</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>bdyout: coarse-mesh boundary conditions</td>
</tr>
<tr>
<td>11-19</td>
<td>I</td>
<td>Initial conditions and FDDA analyses</td>
</tr>
<tr>
<td>21-29</td>
<td></td>
<td>Not used</td>
</tr>
<tr>
<td>31-39</td>
<td>(I)</td>
<td>Analyses for FDDA (dummy file copied from 11-19)</td>
</tr>
<tr>
<td>41-49</td>
<td>O</td>
<td>Model output file for GRIN</td>
</tr>
<tr>
<td>51-59</td>
<td>O</td>
<td>Save-file output for restarts</td>
</tr>
<tr>
<td>61-69</td>
<td>I</td>
<td>Individual observations for FDDA</td>
</tr>
<tr>
<td>61-69</td>
<td>O</td>
<td>Shut-down save-file output for restarts</td>
</tr>
<tr>
<td>71-79</td>
<td>I</td>
<td>Surface analyses for FDDA</td>
</tr>
<tr>
<td>81-89</td>
<td>(I)</td>
<td>Surface analyses for FDDA (dummy file copied from 71-79)</td>
</tr>
<tr>
<td>91-99</td>
<td>I</td>
<td>Input restart file</td>
</tr>
</tbody>
</table>