Ateneo de Manila University

Using the AGILA HPCS

Ateneo High Performance Computing Group
8 January 2001
http://www.math.admu.edu.ph/ahpc/
william.s.yu@ieee.org
Section I

Introduction
Ateneo High Performance Computing Group

★ is a professional interdisciplinary research group that provides the Ateneo de Manila University community with high performance computing services

★ in August 2000, developed a Beowulf-class cluster computer called the AGILA HPCS

★ to support the parallel computing courses offered by University, particularly those computational subjects offered in the applied mathematics/computational science program of the Mathematics Department
AGILA HPCS

- Ateneo Gigaflops-Range, Linux OS, and Athlon Processors High Performance Computing System
- Located in the Advanced Computing Laboratory of the Mathematics Department
- consists of eight (8) compute nodes connected by a 100Mbps Fast Ethernet and supports parallel programming using message passing and scientific computing software such as LAM-MPI, PVM and PETSc
Prerequisites

★ background in any programming language

★ familiar with basic unix commands
 ★ ls
 ★ cp
 ★ rm
 ★ cd

★ able to use unix compile and build tools
 ★ gcc
 ★ g++
 ★ make
 ★ libtool

★ familiar with basic parallel programming
Section II

Getting Started
Getting an AGILA Access Account

★ fill out the AGILA Access Request Form

★ take down the access information that will be provided

★ the AHPCG reserves the right to allow and deny access to the AGILA HPCS
Finding SSH

★ connect to the AGILA HPCS via a SSH client or Secure Shell Client
★ please notify you system administrator if you cannot locate the SSH client in your system
★ Linux/Unix SSH clients can be downloaded at:
★ Windows SSH clients can be downloaded at:
Configuring SSH

Profile Name: agila
Host Name: agila.math.admu.edu.ph
Port: 22
UID: username
Cipher Type: Blowfish
Section III

Navigating thru the System
Linux/Unix Commands

1. `man [command]` - displays the manual pages of the specified command
2. `pwd` - displays the path of the current directory
3. `ls [directory]` - displays the contents of the specified directory
4. `cd [directory]` - changes the current directory to the specified directory
5. `cp [source] [destination]` - copies a file from specified source to the specified destination
6. `mv [source] [destination]` - moves a file from specified source to the specified destination
7. `cat [file]` - displays the contents of the specified file
8. `less [file]` - displays the contents of the specified file and prompts the user when the display is filled
9. `exit` - to logout of the system
Text Editing Tools

★ **vim** is a text editor that is upwards compatible to Vi. It can be used to edit any ASCII text. It is especially useful for editing programs.

★ **jed** is a programmer’s text editor that provides color syntax highlighting. Emulation of Emacs, EDT, Wordstar, and Brief editors. Extensible in a language resembling C. Completely customizable. Editing TeX files with AUC-TeX style editing (BiBTeX support too). Folding support, and much more...

★ **ed** is a line-oriented text editor. It is used to create, display, modify and otherwise manipulate text files.
Uploading files to the AGILA HPCS

★ locate the FTP client

★ configure the FTP client
 ftp server: agila.math.admu.edu.ph
 port: 22
 name: username

★ enter user name and password
FTP Commands

★ ls [directory] - displays the contents of the specified directory

★ cd [directory] - changes the current directory to the specified directory

★ put [file] - upload a file to the AGILA server

★ mput [file] - upload a file to the AGILA server; this command supports wildcard characters

★ get [file] - gets a file from the AGILA server

★ mget [file] - gets a file from the AGILA server; this command supports wildcard characters

★ bye - to exit the system
Section IV

Building your Program
GNU Compiler Collection

★ gcc - GNU ANSI-complaint C compiler

★ g++ - GNU C++ compiler

★ g77 - GNU ANSI-complaint Fortran 77 compiler

[username,~,09:13]$ g77 sample.f -o sample
[username,~,09:13]$ gcc sample.c -o sample
[username,~,09:13]$ g++ sample.cpp -o sample
Compiling LAM MPI Programs

★ hcc - LAM MPI C compiler wrapper

★ hcp - LAM MPI C++ compiler wrapper

★ hf77 - LAM MPI Fortran 77 compiler wrapper

[username, ~, 09:13]$ hf77 sample.f -o sample
[username, ~, 09:13]$ hcc sample.c -o sample
[username, ~, 09:13]$ hcp sample.cpp -o sample
Compiling MPICH MPI Programs

★ mpicc - MPICH MPI C compiler wrapper

★ mpiCC - MPICH MPI C++ compiler wrapper

★ mpif77 - MPICH MPI Fortran 77 compiler wrapper

[username, ~, 09:13]$ mpif77 sample.f -o sample
[username, ~, 09:13]$ mpicc sample.c -o sample
[username, ~, 09:13]$ mpiCC sample.cpp -o sample
Running MPI Programs

★ `lamrun` - LAM MPI execute binary wrapper

★ `mpirun` - MPICH MPI execute binary wrapper

[username,~,09:13]$ mpirun -np 8 myprogram

[username,~,09:13]$ lamrun -np 8 myprogram
Section V

Debugging your Program
Compile programs for debugging

★ add the -g compiler flag

★ call standard compiler/compiler wrappers to compile and build the programs

[username,~,09:13]$ hf77 -g sample.f -o sample
[username,~,09:13]$ hcc -g sample.c -o sample
[username,~,09:13]$ hcp -g sample.cpp -o sample
Running the Debuggers in Console Mode

Running the Debugger

[username,~,,09:13] $ mpirun -np 8 rungdb.tcsh
 myprogram

rungdb.tcsh Debugger Script

#!/bin/kcsh -f

if ("$LAMRANK" == "0") then
 gdb $*
endif exit 0
Running the Debuggers in X-Windows

Running the Debugger

[username,~:09:13]$ mpirun -np 8 -x DISPLAY rungdbx.tcsh myprogram

rungdbx.tcsh Debugger Script

#!/bin/kcsh -f

echo "Running GDB on node 'hostname'"
xterm -e gdb $* exit 0
Section VI

Exercises
Copyright © 2000-2001 by William Emmanuel S. Yu. This material may be distributed only subject to the terms and conditions set forth in the Open Content License, v1.0 or later (the latest version is presently available at http://opencontent.org/pl.shtml).