Ateneo de Manila University

Developing a UTC-synchronized University Network Time Service

Desiree Doroja and William Emmanuel S. Yu
February 2002
http://cng.ateneo.net/wyu/
wyy@admu.edu.ph
Correct Time is Relative
Universal Time

In General:

★ essential component of any modern society
★ critical component of global communications
★ scheduling and synchronization

In Particular:

★ synchronization of the University Bell System
★ synchronization of network enables workstations
★ provide accurate time for communication systems
Section I

System Overview
System Outline

- Distributed Time Service
- University Bell System
- Bell Trigger Hardware
- Bell Scheduling Software
Section II

Distributed Time Service
Network Time Protocol

★ protocol to synchronize time across a WAN or the Internet
★ time is synchronized to Universal Coordinated Time (UTC)
★ also free and open source software package
★ provides different means for synchronizing to UTC:
 – Internet Host (tens of milliseconds)
 – Global Positioning System Receivers (hundreds of picoseconds)
 – CHU Radio Service (not available 24 hours a day in PH)
 – Telephone Modem Service (not available in PH)
AdMU University Time Service
Section III

University Bell System
AdMU Bell System

Old System:

★ Simplex 6400 Master Time Controller
★ contains an internal clock
★ numeric keypad is used to configure the bell times
★ considerable drift has been detected in the past few months
★ centered at the Administrative Services Room, Colayco Hall
★ 24V signals are distributed throughout the system
AdMU Bell System

New System:

★ PC-based System running on the Linux Operating System
★ system will be synchronized with University Time Service
★ uses a parallel port interface relay circuit to trigger the bell system
★ a manual override and a backup circuit will be provided
★ still centered at the Administrative Services Room, Colayco Hall
★ still uses 24V signals to trigger bells in the system
Section IV

Bell Trigger Hardware
Relay Trigger Circuitry

- Manual switch (push button)
- Optoisolator
- Selector switch
- Magnetic relay
- $1 \, \text{k}\Omega$ resistor
- 5V power supply
- Q2N3904 transistor
- Connection to Bell
Section V

Bell Scheduling Software
Bell Scheduling Software

composed of two critical operations:

★ synchronization

★ triggering

synchronization

★ uses NTP software

★ configured to synchronize with the GPS clock server

★ Linux configured for precision time keeping

triggering

★ wrote a parallel port interface program called **trigger**

★ **trigger** uses a general purpose parallel port library called **libparport**

★ **trigger** is invoked by the **cron** daemon
Using *cron*

cron

★ a powerful scheduling daemon

★ allows tasks to be repeated periodically

★ flexible

★ initially intimidating/confusing

★ reads schedule from *crontab* file
crontab

- Each line has five time/date fields
- Followed by a username and then the program to be executed
- Commands are executed by crond when the time fields match

<table>
<thead>
<tr>
<th>field</th>
<th>allowed values</th>
</tr>
</thead>
<tbody>
<tr>
<td>minute</td>
<td>0-59</td>
</tr>
<tr>
<td>hour</td>
<td>0-23</td>
</tr>
<tr>
<td>day of month</td>
<td>1-31</td>
</tr>
<tr>
<td>month</td>
<td>1-12</td>
</tr>
<tr>
<td>day of week</td>
<td>0-7</td>
</tr>
</tbody>
</table>

Table 1: Date and Time Fields for CRON
sample crontab

20 8-20 * * 1,3,5 root trigger 2 10
30 7-19 * * 1,3,5 root trigger 2 20
20 10,13,16,19 * * 2,4 root trigger 2 10
30 7,10,13,16,19 * * 2,4 root trigger 2 20
50 8,11,14,17,20 * * 2,4 root trigger 2 10
00 9,12,15,18 * * 2,4 root trigger 2 20

Figure 1: Sample crontab file

- typical Ateneo bell schedule
- includes warning bell schedules
- bell durations and time periods can be configured
Section VI

Demonstration and Conclusion
Points for Improvements

★ better interface to cron

★ smaller Linux distribution
 ★ floppy
 ★ cdrom

★ Use Real-time Linux instead of just Linux

★ another GPS receiver
Copyright © 2000-2001 by William Emmanuel S. Yu. This material may be distributed only subject to the terms and conditions set forth in the Open Content License, v1.0 or later (the latest version is presently available at http://opencontent.org/opl.shtml).